Outliers can skew your data analysis. Here’s a quick guide on how to remove outliers in R:
1. **Identify Outliers:** Use the `boxplot()` function to visualize and identify outliers.
boxplot(your_data$variable)
2. **Calculate IQR:** Compute the Interquartile Range (IQR) to determine outlier thresholds.
iqr <- IQR(your_data$variable)
3. **Define Limits:** Establish the upper and lower bounds to identify outliers.
upper_bound <- quantile(your_data$variable, 0.75) + 1.5 * iqr
lower_bound <- quantile(your_data$variable, 0.25) - 1.5 * iqr
4. **Remove Outliers:** Filter out the outliers from your dataset.
filtered_data <- your_data[your_data$variable > lower_bound & your_data$variable < upper_bound, ]
By following these steps, you ensure cleaner, more accurate data for your analysis in R.